最重要的十个二项式系数恒等式

$$\binom{n}{k}=\frac{n!}{k!(n-k)!},整数n\geq k\geq 0$$ 阶乘展开式
$$\binom{n}{k}=\binom{n}{n-k},整数n\geq 0,k是整数 $$ 对称恒等式
$$\binom{r}{k}=\frac{r}{k}\binom{r-1}{k-1},整数k\neq 0$$ 吸收/提取恒等式
$$\binom{r}{k}=\binom{r - 1}{k}+\binom{r - 1}{k - 1},k是整数 $$ 加法/归纳恒等式
$$\binom{r}{k}=(-1)^k\binom{k-r-1}{k},k是整数 $$ 上指标反转
$$\binom{r}{m}\binom{m}{k}=\binom{r}{k}\binom{r-k}{m-k} ,m,k是整数 $$ 三项式版恒等式
$$\sum_k\binom{r}{k}x^ky^{r-k}=(x+y)^r,整数r\geq 0 或者 \vert x/y \vert <1 $$ 二项式定理
$$\sum_{k\leq n}\binom{r+k}{k}=\binom{r+n+1}{n},n是整数 $$ 平行求和法
$$\sum_{0\leq k \leq n}\binom{k}{m}=\binom{n+1}{m+1},整数m,n\geq 0 $$ 上指标求和法
$$\sum_{k}\binom{r}{k}\binom{s}{n-k}=\binom{r+s}{n},n是整数 $$ 范德蒙德卷积公式

花里胡哨的二项式系数

跳进了这个坑。。。于是就开始自闭了。

还有许许多多关于二项式系数的东西没有写,以后会补的(?)

二项式系数

$$\binom{n}{m}=\frac{n!}{m!(n-m)!}$$

严格一点的定义:

$$
\binom{n}{m}=\begin{cases}
\frac{n!}{m!(n-m)!} & 整数m\geq 0\
0 & 整数m<0
\end{cases}
$$

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×